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Abstract--The motion of large drops with E6tvos numbers as high as 1000 has been investigated in large tanks 
where wall effects are negligible. Shapes observed include ellipsoidal- and slSherical-caps with and without 
skirts, crescents, biconcave disks, toroids and wobbling irregular forms. The dlipsoidal.cap drops are shown 
to obey an equation based upon an extension of the Davies ~.'ad Taylor theory for bubbles in liquids, 
regardless of whether skirts are being formed and shed at the rear. 

I N T R O D U C T I O N  

Extensive work has been performed on the mechanics of small and medium size bubbles and 
drops. Large gas bubbles have also received considerable attention in the literature. However, 
there has been very little work on large drops, drops for which the E6tvos number, 
E o  = gd,2Aplo  ", is greater than about 40 Where g is the acceleration of gravity, d~ the 
volume-equivalent sphere diameter, or the inteffacial or surface tension and Ap = [P~ - pd[ the 
absolute value of the density difference between the continuous and dispersed phases. The 
present paper presents experimental data regarding such liquid drops rising or falling in an 
immiscible liquid media of large extent. Drops up to a litre in volume were injected; the systetns 
studied covered a broad range of physical properties with the modified M-group, M = 
At~,/~'/pc2tr 3, covering the range 5.7 × 10 -t2 to 2.4 × 103. Here ~¢ is the continuous phase 
viscosity..For the drops described in the present paper, the E6tvos number ranged between about 
10 and 1000. 

E X P E R I M E N T A L  A P P A R A T U S  AND P R O C E D U R E  

Most of the experiments were carried out in a large tank of 1.22 m s cross-section and of depth 
2.44 m. This tank consisted of Plexiglass windows held in place by a rigid cast iron framework. 
With such a large tank, wall effects were negligible, even for the large drops studied here. In view 
of the large volume of liquid required to fill this tank, its use was restricted to water and aqueous 
sugar solutions as continuous phase liquids. Experiments wherein ethylene glycol and paraffin oil 
were used as the continuous phase were carried out in a cylindrical' glass column of diameter 
0.46 m and height 2.8 m. 

Before measurements were taken, the dispersed liquid to be used was stirred with an equal 
weight of the continuous fluid. Fluid densities were then determined with a calibrated hydrometer 
or using a conventional weighing method by means of a pycnometer. Liquid viscosities were 
measured over a range of temperature from 18 to 40"C using Brookfield rotational and 
Cannon-Fenske capillary viscoemeters. Interracial tensions were determined using a ring 
tensiomat. Temperatures were measured prior to each run and ranged between 24 and 30"C,, The ' 
physical properties for all systems and values of the modified M-group are presented in table 1. 
No stringent measures were taken to eliminate all surface active agents from the liquids used. 

Single drops (or bubbles) were formed by injecting the desired volume into an inverted 
semi-circular cup near the base of the column. The drop was released by rotating the cup into an 
upright position using a bimba air cylinder. Immediately after release, the drop passed through 
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Table 1. Systems studied and physical properties 

System Density Density Viscosity Viscosity Interracial tension Temperature 
No. Dispersed phase Continuous phase p, (g/cm 3) p~ (g/cm 3) /~, P #~, P cr (dyn/cm) M-group (°C) 

1 Chloroform Aq. Sugar solution 1.39 1.483 30.8 0.0056 32.7 1.2 x 10 ~ 19.0 
2 Carbon tetrachloride Aq. Sugar solution i.38 1.586 30,8 0.0105 34.4 2.3 x 103 19.2 
3 5 cS silicone oil Aq. Sugar solution 1.39 0.92 28.9 0.055 53.5 1.1 × 103 19.5 
4 Carbon tetrachloride Aq. Sugar solution 1.39 i.586 12.0 0.0104 34.4 5.1 × 10' 27.3 
5 Air Aq. Susar solution 1.366 0.00126 3.4 0;00018 76.2 2.2 x 10-' 27.0 
6 Chloroform Aq. Sugar solution 1.366 1.483 3.0 0.0056 25.2 3.1 x 10 ' 28.5 
7 50 cS silicone oil Aq. Sugar solution 1.366 0.958 3.1 0.465 27. ! 9.9 x 10- ~ 28.0 
8 Air Aq. Sugar solution 1.392 0.00126 13.35 0.00018 79.1 4.5 x 10' 28.5 
9 50 cs silicone oil Aq. Sugar solution 1.31 0.958 0.54 0.465 24.6 1.1 × 10 ~ 25,0 

10 Chloroform Aq. Sugar solution 1.31 1.483 0.54 0.0056 31.4 2.7 x 10 " 25.0 
11 Air Paratrm oil 0.883 0.110126 2.0 0.00018 37.5 3.4 x 10 ~ 19,5 
12 1,2-Dichloroethane Ethylene glycol 1.112 1.247 0.148 0.0104 6.9 i.5 x 10 ' 22.0 
13 Air Aq. Sugar solution 1.30 0.00126 0.37 0.00018 73.6 3.5 x 10-' 19.5 
14 Air Ethylene glycol 1 .112 0:00126 0.135 0.00018 42.0 4.0 × 10" 25.0 
15 50 cS silicone oil Water 0.998 0.948 0:010 0,465 44.2 5.7 × 10 -12 19.6 
16 Water Paraffan oil 0.883 0,998 1.1 0,010 52.7 l a x  10 ' 25.0 
17 50 cS silicone oil Ethylene glycol I.I 12 0.958 0.124 0.465 24.0 2.1 x 10-* 23.5 
18 Glycerine Paraffin oil 0.883 1.272 1.85 12.5 38.8 9.8 x 10 z 17.0 
19 50 cS silicone oil Paraffin oil 0.883 0.958 2.0 0.465 7.0 4.4 x 10 ° 20.0 
20 o-Dichlorobenzene Aq. Sugar solution 1.38 1.288 i 1,2 0.0t37 36.8 1.5 × 10' 27.8 
21 o-Diethyl Phthalate Aq. Sugar solution 1.38 !.115 i i.2 0.0890 29.4 8.5 x 10' 27.8 
22 5 cS silicone oil Aq, Sugar solution 1.38 0.92 !1.6 0.0545 53.5 2,8 x 10 ~ 26.5 

> 

e~ 

C3 



THE BEHAVIOUR OF LARGE DROPS IN IMMISCIBLE LIQUIDS 69 

an open control gate, operated by a second bimba air cylinder, which could be closed to trap any 
satellites following the principal drop or bubble. In cases where the dispersed liquid was more 
dense than the continuous liquid, drops were released manually by pouring from above. Best 
results were achieved by gently immersing the cup before tipping it to release its contents. 

The motion of rising and falling fluid particles were recorded on 16 mm cin~ film using a Bolex 
reflex camera and a Hycam high speed camera. A scale was photographed prior to each run to 
provide a frame of reference. For systems where the resolution was poor, minimal amounts of a 
"biological oil red stain" were used to dye the dispersed fluid. Fluid properties were not 
measurably affected by the dye. Most of the photographs relied upon back-lighting, with flood 
lights illuminating a translucent white sheet of paper against which the drop appeared as a 
silhouette. 

Further details of the experimental apparatus and procedures are available elsewhere 
(Wairegi 1972, 1974). 

EXPERIMENTAL OBSERVATIONS 

When large drops and bubbles moved freely under the influence of gravity, the following types of 
motion and shapes were observed: 

(a) Rectilinear vertical motion of cap-shaped particles parallel to an axis of symmetry. In 
many cases, these drops or bubbles trailed thin "skirts" of the dispersed phase similar to those 
noted by Guthrie and Bradshaw (1969) for bubbles. 

(b) Cap-shaped particles with unbalanced skirts or exfoliating continuously and asymmetri- 
cally from the rear. 

(c) Crescent-shaped drops showing steady rectilinear motion. 
. (d) Biconcave disks showing steady rectilinear motion. 
(e) Toroidal drops showing unsteady motion and break-up. 
(f) Stretching, rolling and random wobbling motion accompanied by irregular shapes. 

These shapes and types of motion will be discussed in turn, with particular attention devoted 
to (a). A cin6 film has been prepared by the authors showing examples of the different types of 
motion, and this film may be loaned upon request. Some of the shapes observed are shown in 
figures 1 and 2. 

Figure I. Shapes of ellipsoidal-cap drops with and without trailing skirts: (a) System 20, d., = 5.1 cm; (b) 
System 20, d, = 6.8 cm; (c) System 3, d, = 8.8 cm; (d) System II, d, = 5.8 cm; (e) System 21, d, = 6.0 cm; (f) 

System 22, d, = 6.4 cm. 
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Figure 2o Other observed shapes of large liquid drops: (a) Crescent shape, System 7, d. = 3.7 cm; (b) 
Exfoliating crescent. System 19. d, = 4.0 cm; (c) Biconcave disk, System 17, d, = 1.1 era; (d) T0roids, System 

18, d, ,= 1.5 cm for original toroid. 

(a) Cap-shaped ltuid panicles 
"Spherical-capped" bubbles have received considerable attention in the literature due to their 

importance in fluidized beds, underwater explosions and metallurgical processes. For a review 
see Wegener & Pariange (1973). Similar shapes have been observed by Faraxoui & Kinter (1961) 
and Shoemaker & Chazal (1969) for liquid-liquid systems, but very little data is available. 

In the present work it was found that drops with Re greater than about 1,2 and Eo greater 
than 40 formed shapes that might loosely be termed spherical-caps, these criteria being the same 
as for spherical-cap gas bubbles (Grace 1973). However, the caps were more oblate spheroidal 
than spherical until Re =pcd, U//zc exceeded a value of approximately 40 at which point a 
circular arc could be fitted over the front 60 ° of the surface with no appreciable deviation. Here U 
is the terminal velocity of the fluid particle. 

The terminal velocity of spherical-capped bubbles is predicted quite closely (Davenport et al. 
1967) by a well-known equation developed by Davies & Taylor (1950): 

u. ={(gR) ''=. [1] 

In deriving this equation, it is assumed that the upper surface in the neighbourhood of the nose is 
perfectly spherical and of radius R and that the pressure distribution there can be calculated 
assuming irrotational flow past a complete sphere of radius R. Collins (1966) obtained a second 
improved approximation using a perturbation technique, but [1] is generally used because of its 
simplicity and the fact that the second approximation differs only slightly from the Davies and 
Taylor result. 

The above equation was modified by Harrison et al. (1961) to account for cases where the 
dispersed phase density is of the same order as the continuous phase density. The resulting 
equation, 

2 U = ~ (gR Ap/oc)"2 [2] 
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was obtained by assuming the dispersed fluid to be perfectly stagnant. In view of the oblate 
ellipsoidal-cap profile of drops in the range 1.2 < Re < 40 (Eo >~40), we have developed an 
equation using essentially the Davies and Taylor assumptions, but with the pressure distribution 
derived assuming the cap is a portion of an oblate ellipsoid of revolution. The result is 

U = E ~/(gb Ap/pc) [3] 

where b is the minor (vertical) semi-axis of the cap and 

1 I E = ~ [sin- e - e~/(1 - e~)] [4] 

is a function only of the cap eccentricity, e. Since the derivation of the equation follows closely 
that given by Grace & Harrison (1967) for prolate ellipsoid-cap bubbles, only a brief outline has 
been given and this appears in the appendix. It is necessary, however, to say something about the 
appearance of the Aplpc term in [3]. 

For all of the eases of ellipsoidal- or spherical-cap drops observed in the present work, the 
Reynolds number which characterizes the internal fluid motion, i.e. Re~ = p~l, U l ~ ,  was of order 
l0 s or more even when Re =pcd, Ultzd was of order unity. Hence it is reasonable to think in terms 
of a thin interior boundary layer (Harper & Moore 1968) across which the pressure is impressed 
by the slowly moving interior fluid. It is not necessary to assume that the interior fluid is 
completely stagnant (in violation of the no slip condition at the surface), but only that the bulk of 
the interior fluid is moving considerably slower than U relative to axes fixed on the drop. This has 
been confirmed by measurements of internal circulation (Wairegi 1974). Therefore the pressure 
impressed on the interior boundary layer is essentially the hydrostatic pressure distribution. With 
this assumption the Aplpc term appears in [3] as shown in the appendix. Note that E --,2/3 and 
b --* R as e --,0 so that [3] reduces to [2] as the ellipsoidal-eap becomes a spherical-cap; with the 
further simplication pc '~ p~, [2] and [3] reduce to [1]. The relationship between drop or bubble 
shape and M and Eo is considered elsewhere (Grace et al. 1976). 

A comparison between predictions from [3] and [4] and experimentally measured values of U 
is given in figure 3 for Eo ~ 40 and Re > 4. Agreement is shown to be very favourable. The 
scatter in the data is characteristic of measurements for terminal velocities of bubbles and drops. 
Values of e to be used in testing the predictions were obtained from photographs of the drops by 
a procedure analogous to that described by Grace & Harrison (1967); i.e. a family of curves was 
drawn for different values of e for fixed values of cap aspect ratio, h/l where h and i are the 
height and half-width as shown in figure 4. A photographic image of the bubble or drop was then 
projected onto the diagram for the correct h/l ratio, and e was chosen visually. Values of e 
measured in this manner lay between 0 and 0.4. Further details are given by Wairegi (1972, 1974). 
Velocities obtained in the cylindrical column were corrected for wall effects by applying the 
correction factor suggested by Strom & Kintner (1958). However, this correction never exceeded 
12% and was therefore not critical. 

To summarize, [3] and [4] give a good prediction of the terminal velocities of ellipsoidal- and 
spherical-cap drops and bubbles for which Eo >I 40 and Re ~> 4. For Re ~ 40 (with Eo still ~40), e 
is very nearly 0 and it is more convenient to use [2] in place of [3] and [4]. The equations were 
found to apply whether or not the drops or bubbles were trailing skins, thereby confirming one of 
the central assumptions of the theory, i.e. that the terminal velocity can be determined 
considering only the shape and motion in the frontal (nose) region. 

(b) Drops and bubbles with unbalanced or exfoliating skirts 
As indicated above, many of the drops studied in the present work trailed "skirts". These 

skirts are of considerable interest and will be the subject of a future paper. For the present, it is 
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Figure 3. Comparison of terminal velocities predicted using [3] and [4] with experimental results for fifteen 
systems where Eo ~ 40 and Re >->. 4, 

System Symbol 
1 • 
2 ,0 
3 [] 
4 O 
5 • 
6 O 
7 [] 
8 & 
9 • 

10 O 
11 • 
10 ~7 
13 × 
14 
16 * 
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Figure 4. Definition sketch for an oblate spheroidal-cap drop or bubble, 
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worth noting that the skirts were not always of steady length or symmetrical. It was common to 
observe skirts growing and eventually becoming unbalanced (figure l(c)), showing waves (figure 
l(d)) and shedding from the rear (figures l(e) and (f)). Similar observations were made by 
Wegener et at. (1971). 

(c) Crescent-shaped drops 
Unusual shapes occurred for large drops of silicone oil rising through a 3 p aqueous sugar 

solution (system 7) or falling through 2 p paraffin oil (system 19). Small drops were spherical, but 
as the size increased, a bulge developed at the front. The rear gradually became hollow while the 
front remained smooth and rounded giving rise finally to a crescent (quarter moon) shape (see 
figure 2(a)). As the size of the drops was increased still further, thin trailing elements developed at 
the outer tim. These filaments either broke into small droplets which were carded around in the 
wake or exfoliation occurred as shown in figure 20a). Somewhat similar observations were made 
by Thomson & Newall (1885), but we have been unable to find any other report of 
crescent-shaped drops, i.e. drops where the rear surface is so deeply indented that it is nearly 
parallel to the curved front surface. 

(d) Biconcave disks 
Drops of silicone oil in ethylene glycol (system 17) in the range 1.0 cm < d, < 1.6 cm assumed 

a steady shape resembling that of a red blood cell or a biconcave disk. A sketch is shown in figure 
2(c). Larger drops became unstable and swayed in an irregular manner. A thickening appeared on 
one side while the opposite side thinned considerably. The indentations were observed to move 
around the drops as they rose through the column. As shown in table 2, terminal velocities of the 
biconcave drops show reasonable agreement with an equation developed by Levich (1962), i.e. 

4A o" 1/4 

where the drag coefficient CD has been taken as unity. 

(e )  Toroidal drops 
When a drop of glycerine (1.5 cm < d. < 2 cm) was allowed to fall in paraffin oil (system 18), it 

descended as a toroid or vortex ring (figure 2(d)). As a drop travelled down the column, 
proturberances developed at a number of positions. The growing portions fell more quickly 
creating new toroids similar to the original. As the secondary toroids fell, they gave rise to still 
further toroids. As a result, a family of toroids soon appeared, each connected to nelghbours by 
umbilical cords of the dispersed liquid. A similar phenomenon has been observed previously by 
Thomson & Newall (1885), Stuke (1954a, 1954b) and O'Brien (1961) for liquid pairs which are 
miscible, partially miscible and immiscible. Waiters and Davidson (1963) also reported toroidal 
air bubbles (in water), but although the motion of these toroidal bubbles was unsteady, they did 
not proliferate in the manner described here for liquid toroids. 

Table 2. Comparison of experimental terminal velocities of disk-shaped drops (system 
17) with velocities calculated using [5] 

Experimental Terminal velocity Reynolds 
Drop Diameter terminal velocity obtained from [5] number 
No, d, (cm~ (orals) (cm/s) Re 

l 0.89 10.3 10.4 82.5 
2 1.12 I0.3 10.4 103.5 
3 1.28 10.2 10.4 117.8 
4 1.62 I0.4 10.4 150.3 

MF VoL 3 No I - -F 
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The number and size of toroids into which the original drop subdivided and their spacial 
distributions were quite irregular. As a result of the continuous breaking, the motion was highly 
unsteady and no meaningful data on velocities could be obtained, even using a high speed 
camera. 

(f) Stretching, rolling and random wobbling drops 
Drops of silicone oil rising through tap water (system t5) exhibited stretching, rolling and 

"random wobbling" (Schroeder 1964). It is notable that this behaviour occurs for low M systems, 
systems which have received extensive attention in previous work. Wobbling ~ to occur at a 
Reynolds number of about 200, a value which corresponds closely to the onset of vortex shedding 
behind rigid spheres. Thus the secondary motion of drops in low M systems is almost certainly 
associated with phenomena occurring in the wake. 

DISCUSSION 

The eLlipsoidal-cap and spherical-cap liquid drops observed in the present work appear to be 
very similar to shapes observed for large gas bubbles and [2] and [3] apply under the same 
restrictions in either case. The same parallel appears to hold for the irregular wobbling shapes 
which occur in gas-liquid and in liquid--liquid systems for low M systems. However, there 
appears to be no strict gas-liquid analogue to the crescent and biconcave shapes and to the type 
of toroidal motion observed here for liquid drops. In all of these cases, the viscosity ratio, ~/~c, 
was considerably higher than can generally be achieved when a gas is dispersed in a liquid and 
this may account for the peculiar shapes observed in systems 7, 17, 18 and 19 (see table 1). 

The success of the Davies and Taylor theory (in extended form) for ellipsoidal- and 
spherical-cap liquid drops down to Reynolds numbers as low as 4 confirms the usefulness of the 
theory for large fluid particles. Levich's equation, [5], appears to work well for .biconcave 
disk-shaped drops, but further confirmation with other systems is required. The other shapes 
observed are sufficiently complex or unstable that theoretical prediction of terminal velocities 
appears very difficult. The unstable shedding of the dispersed phase liquid from trailing skirts in 
some systems, while having negligible effect on terminal velocities for the length of column 
employed in the present study, must have a considerable influence on interphase transfer 
phenomena and deserves further study. 

CONCLUSIONS 

The most common shape of large fluid drop observed in the present study was the oblate 
eflipsoidal-cap or spherical-cap shape, the ellipsoidal-cap form being preferred at Reynolds 
numbers between about 1.2 and 40 and the spherical-cap form at higher Reynolds numbers. The 
terminal velocity for these drops is well predicted by an extended form of the Davies and Taylor 
theory and is independent of the occurrence of skirts, even growing or shredding skirts, at the 

rear. 
Other shapes identified include crescent shapes, biconcave disks, toroids, and irregular 

wobbling shapes. The two latter shapes have been discussed previously in the literature, but the 
other two shapes appear to be previously unreported. 

Acknowledgement~Financial assistance from the National Research Council of Canada is 
gratefully acknowledged. 
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A PPE NDI X 

Terminal Velocity of Oblate EUipsoidal-Capped Drop 

We assume that the terminal velocity of a (large) etlipsoidal-capped drop may be determined 
by balancin$ pressure terms over the nose region in a manner analogous to the Davies & Taylor 
(1950) treatment for spberical-cap bubbles. Thus the effect of wakes and of trailing skirts (if any) 
are neglected. The flow is assumed axisymmetric and steady relative to axes fixed on the drop. 
Interfacial tension forces are ignored and the pressure over the front region is calculated from 
potential flow theory assuming a complete oblate spheroid. 

The stream function for an oblate spheroid moving along its axis of symmetry at velocity U is 
given by Milne-Thomson (1968). By superimposing a uniform stream of velocity U in the 
opposite direction we obtain the stream function for streaming past an oblate ellipsoid of 
revolution, i.e. 

Uc 2 
= - 2K sin2 ~{K cosh 2 ~ -(sinh ~: -cosh 2 ~ cot -~ sinh ~)} [A1] 
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where c is the focal length of the ellipse, r~ and $ are elliptical coordinates and 

K = sin -~ e - ex/(1 - e2). 

The surface velocity is given by 

[A2] 

1O__~ [A3] 
qo = Ja50~ e-~o 

where ~o is the value of ~ at the surface, o3 is a Cartesian coordinate and 

j2 = f ' (z) f ' (~) [A4] 

with f ( z )  the conforraal  t ransformation function defined by MiMe-Thomson (1968). 

After substitution and considerable simplification, we obtain 

Uea sin ~7 
qo = K{(1 - e ~) sin 2 n + co s217} la" [AS] 

Applying Bernoulli 's  theorem between the front stagnation point and another point on the surface 

of the drop, we obtain the surface pressure as 

p = p, + pcgb(l - cos ~) - pcqoZ/2 [A6] 

where p, is the pressure at the front stagnation point. If we assume that the interior pressure 

distribution is simply the hydrostatic pressure distribution for the dispersed fluid as discussed 

above, then p must also be given by 

p = p, + p~gb (1 - cos 7/). 

Combination of [A6] and [A7] and rearrangement yields 

U~=,, ,~ ~_.~r 2 ( ~ )  [(1_ e2) sin~,~ +cos~,] 
Lgop~ 7 \  sm 71 / 

a p  = lp,  - p , t .  

[A7] 

[AS] 

[A9] 

where 

Table 3. Variation of velocity 
coefficient E with eccentricity 

e 

Eccentricity e E 

0.0 0.667 
0.1 0.669 
0.2 0.675 
0.3 0.686 
0.4 0.702 
0.5 0.725 
0.6 0.757 
0.7 0.803 
0.8 0.874 
0.9 0.998 
1.0 1.571 
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We require that lag] be satisfied in the limit as "q -~0 and this leads to an expression for the drop 

terminal velocity, i.e. 

• U = E ~ ( g b L X p l p c )  [A10] 

where E = K / e  3. It may be shown (Wairegi 1972) that E = 2/3 for the limiting case where e = 0 

for spherical-cap drops. Values of E are tabulated in table 3 for different values of e. 


